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Abstract

We study dominant-strategy mechanisms in allocation domains where agents
have one-dimensional types and quasi-linear utilities. Taking an allocation
function as an input, we present an algorithmic technique for finding opti-
mal payments in a class of mechanism design problems, including utilitarian
and egalitarian allocation of homogeneous items with nondecreasing marginal
costs. Our results link optimality of payment functions to a geometric condi-
tion involving triangulations of polytopes. When this condition is satisfied,
we constructively show the existence of an optimal payment function that is
piecewise linear in agent types.

1. Introduction

A celebrated positive result in dominant-strategy implementation is the class
of Groves mechanism [10] for quasi-linear environments. For unrestricted
type spaces, the Groves class describes all deterministic dominant-strategy
mechanisms [21]. When types are given by single numbers—in single-parameter
domains—it characterizes all efficient mechanisms. Mechanisms within the
Groves class differ from one another in the amounts of payments they col-
lect from the agents. Until recently, most of the attention in the literature
was given to a single Groves mechanism called VCG.1 Our work develops a

1Also known as the Vickrey-Clarke-Groves, the pivotal, or the Clarke mechanism.



technique for finding the best mechanism from the Groves class (and a more
general class that includes non-efficient mechanisms) for a given objective.

To see the need to optimize over mechanisms in the Groves class, consider
allocating free items among a group of participants each having a private
value for receiving an item (or, more generally, scenarios with no residual
claimant absorbing the surplus or covering the deficit). Applying the stan-
dard VCG mechanism in this scenario generates a budget surplus, which
must be “burnt” in order to maintain truthfulness. Thus, a natural objec-
tive is to choose a Groves mechanism that minimizes the amount burnt, or
equivalently maximizes the social welfare (i.e., the sum of the agents’ utili-
ties). This objective is pursued in [17] and [12], where such a mechanism is
independently derived for the allocation of free homogenous items. Another
natural objective is to design payments that guarantee each agent a certain
fair share of the social welfare. To this end, [20] searches the class of Groves
mechanisms for the one that optimizes fairness.2 The same objectives can
be considered in a number of important open problems such as allocation of
items that have costs (this allows modeling tragedy of the commons scenarios
as we discuss in Section 5.2) and public project problems.

In this paper, we propose a general algorithmic method3 for approaching a
class of problems including the ones mentioned above. For previously solved
problems (see Section 5.1), our technique provides a common approach (and
a unifying geometric interpretation) while existing solutions were derived
using different custom-made technique. We also apply our approach to solve
some of the open problems from economic theory (see Section 5.2).

Specifically, we consider mechanism design problems in single-parameter
domains. All of the examples in this paper come from allocation domains,
but we emphasize that the technique is not limited to them: for example,
the public project problem (see, e.g., [19] section 9.3.5.5) can also be studied
using the technique. We will however, for the ease of exposition, use the
terminology of allocation domains by referring to the outcome function as the
allocation function and saying that the private type of an agent corresponds
to his value for being “allocated”.

For a given allocation function assigning goods to n agents, a dominant-

2[3] and [4] propose an equivalent mechanism.
3We refer to our approach as algorithmic as, in general, it requires solving a linear

program.
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strategy mechanism is defined by a rebate function h : Rn−1 → R that deter-
mines the amount of payment to be redistributed back to each agent based on
the values of the other agents. Our goal is to apply our algorithmic technique
to find an optimal rebate function according to the objective specified by the
problem (e.g., welfare-maximization, fairness, or revenue-maximization) and
satisfying the provided constraints (e.g., individual rationality, no subsidy,
or k-fairness).

Our work takes a geometric view of rebate optimization. The value space
can be viewed as an n-dimensional hypercube (or a simplex), while the cor-
responding domain of rebate functions is a hypercube in (n− 1) dimensions.
We characterize optimal rebates based on geometric properties of subdivi-
sions of these hypercubes. Given subdivisions satisfying these properties,
we consider a restricted problem that includes only value profiles that corre-
spond to the extreme points of the subdivision of the n-dimensional cube.
The restricted problem can be solved using linear programming. We then
show how to obtain an optimal solution to the original, unrestricted problem
by interpolating optimal rebates of the restricted problem. By construction,
the optimal rebate function is (piecewise) linear, thus proving the existence
of optimal linear rebates.

This paper contributes to the literature in the following ways. First,
we develop a general approach, which can be used to solve to a class of
mechanism design problems. Second, we provide a geometric perspective
on optimizing payment functions in dominant-strategy mechanisms: optimal
payments can be obtained if one can find a subdivision of n and n−1 dimen-
sional polytopes satisfying certain properties. Thus, we reduce the problem
of finding optimal payments to the problem of polyhedral subdivisions. While
in general, our approach relies on solving a linear program, in some problems
it leads to a solution without any computation (see Sections 5.1.2 and 5.2.2).

The paper unfolds as follows. We start with preliminaries in Section 2 and
illustrate our approach on a simple example in Section 3. The approach of
finding optimal payments based on geometric properties of the space of values
and the domain of payment functions is in Section 4. The applicability of our
approach is then demonstrated by applying it, first to previously solved prob-
lems (Section 5.1) and then to more intricate open problems (Section 5.2).
Discussion and directions for future research are presented in Section 6.
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2. Model and Preliminaries

We consider anonymous4 allocation domains where each of the n agents de-
sires one unit of a (homogenous) good, and has an identical single-parameter
type space [0, 1]. A value profile v ∈ [0, 1]n represents the agents’ values for
consuming the good. Without loss of generality for anonymous mechanisms,
we assume v1 ≥ v2 ≥ . . . ≥ vn. We denote the space of value profiles by
V = {v ∈ Rn | 1 ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ 0}. The vector v−i ∈ [0, 1]n−1+

stands for values of the agents other than i and (vi, v−i) is equivalent to v.
The space of all (n − 1)-dimensional vectors v−i is the same for each i, and
is denoted by W = {w ∈ Rn−1 | 1 ≥ w1 ≥ w2 ≥ . . . ≥ wn−1 ≥ 0}. A
mechanism is defined by a pair of functions f : V → {0, 1}n and t : V → Rn

that determine the allocation and payments for each possible report from
the agents regarding their types. Agent i receives a (possibly negative) pay-
ment of ti(v) and is allocated if fi(v) = 1. Utility of agent i is quasi-linear:
ui(v) = fi(v)vi + ti(v).

The following folk theorem describes the class of all dominant-strategy
mechanisms in single-parameter domains.5

Theorem 1 (see, e.g., [19] p. 229). A mechanism (f, t) is implementable
in dominant strategies if and only if for each agent i: (i) fi(v) is monotone6

in vi; (ii) ti(v) = h(v−i)− τ(v−i) if fi(v) = 1 (i.e., i is allocated) and ti(v) =
h(v−i) otherwise, where τ(v−i) = supvi|fi(vi,v−i)=0 vi defines the threshold.7

In this work, we take a monotone allocation function as an input (an efficient
allocation function means that we are considering Groves mechanisms). The
agent’s threshold τ(v−i) is determined by the allocation function, and the
only remaining degree of freedom is the function h(v−i) that adjusts payments
to the agents—this is the function that we optimize. In some applications,
it is intuitive to view τ as the price for being allocated and h as the rebate
distributed back to all agents; henceforth, we refer to h as the rebate function.

4Allocation and payment do not depend on agent identities.
5We emphasize that our focus is on deterministic mechanisms. A more general version

of the theorem for randomized mechanisms that are incentive compatible in expectation
appears in [18, 2].

6Agent i is allocated if and only if his report is above the threshold τ(v−i).
7In stating the theorem, we restricted attention to anonymous payment functions:

payment functions that do not depend on an agent’s identity. This is without loss of
generality for all applications considered in this paper as we discuss in Section 6.
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As mentioned earlier, a mechanism design problem is given by an ob-
jective function and constraints. The problem of finding optimal rebates
for a given mechanism design problem can be expressed as an optimization
problem8

optimizeh:W→R objective value s.t. ∀ v ∈ V
objective value is achieved

constraints hold

At the first glance, this problem is hard: optimization is over functions
and there is an infinite number of constraints. However, in this paper we
propose a technique that makes it possible to tackle such problems effectively.
In the next section, we illustrate our approach with a simple example, and
then provide formal results in Section 4.

3. Illustrative Example

Our approach exploits the linear structure, which characterizes standard
mechanism design problems in quasi-linear domains. Specifically, whenever
the allocation of items is fixed, typical constraints (e.g., individual rationality,
no subsidy) and objectives (e.g., utility maximization, deficit minimization)
are linear in values and payments of the agents. For example, the no-subsidy
(or, weak budget balance) constraint requires the sum of payments to the
agents to be non-positive; the utilitarian objective function maximizes the
sum of agents’ values and payments. Theorem 1 decomposes a payment into
threshold and rebate. If the thresholds of allocated agents are linear in val-
ues, then these constraints become linear in values and rebates. That is, a
constraint at a value profile v can be represented by parameters β ∈ Rn+1

and β′ ∈ Rn

n∑
i=1

βivi +
n∑
i=1

β′ih(v−i) ≥ βn+1 (1)

8Some combinations of constraints may be impossible to implement: this is identified
by the lack of a feasible solution to the optimization problem. We will see an example of
this in Section 5.1.2.
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If in addition the rebate function h is itself linear in values, i.e., h(v−i) =∑
j 6=i γjvj where γ ∈ Rn−1, then, Equation 1 can be fully specified by α ∈

Rn+1

n∑
i=1

αivi ≥ αn+1 (2)

Our results rely on this linearity and we will define the rebate function h
to be (piecewise) linear so that the constraints take the form of Equation 2.
This is illustrated in the following 2 examples.

(a) The allocation region. (b) Optimal rebate function.

Figure 1: Constant allocation throughout the value space.

Consider a simple mechanism design problem where one item needs to be
allocated between two agents. The item should be allocated to the agent with
the higher value (i.e., the allocation function is efficient), the sum of payments
to the agents must be non-positive (i.e., no subsidy), and the objective is to
find a rebate function that maximizes the sum of agents’ utilities measured
as a percentage z of the allocated agent’s value.

In this example, the domain of the rebate function W = {w ∈ R |
1 ≥ w1 ≥ 0} is the real interval between 0 and 1. The space of values
V = {v ∈ R2 | 1 ≥ v1 ≥ v2 ≥ 0} is a triangle given by the extreme points
(0, 0), (1, 0), and (1, 1) shown in Figure 1(a)—recall that the value vectors
are non-decreasing without loss of generality for anonymous mechanisms,
and thus only the bottom half of the unit square is relevant. The allocation
is fixed for all profiles of values: as the agent with a higher value is called
agent 1, agent 1 always gets the item. The threshold for agent 1 is the value
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of agent 2, τ(v−1) = v2, which is linear throughout the value space. The
optimization problem is

max
h:W→R,z∈R

z s.t.

v1 + (h(v2)− v2) + h(v1) ≥ zv1 ∀v ∈ V
(h(v2)− v2) + h(v1) ≤ 0 ∀v ∈ V

Notice that the constraints are linear in v and h(v−i), and also linear in
z (for a constant z, the constraints are of the form given in Equation 1).
Thus, we have a linear program. However, the number of constraints and
variables (one variable for the objective value z and one rebate variable for
each w ∈ W ) is infinite. The following observation lets us reduce this linear
program to a finite one.

Observation 1. A linear constraint (see Equation 2) holds at all v ∈ p
of a (convex) polytope p ⊆ Rn if and only if it holds at the points v ∈
ExtremePoints(p), where ExtremePoints(p) denotes the set of extreme points
of the polytope p.

The constraints in the linear program above must hold at all profiles
v ∈ V . By the observation above, since V is a polytope, we only need to make
sure the constraints hold at the extreme points (0, 0), (1, 0) and (1, 1). When
we enforce the constraints at these points only, the set of rebate variables
becomes finite as well: h(0) and h(1). We refer to the problem that enforces
constraints at the extreme points of the value space as a restricted problem.

Let ĥ(0), ĥ(1), and ẑ denote the optimal rebates and the objective value
for the restricted problem. Since a restricted problem includes only a sub-
set of constraints of the original problem, ẑ provides an upper (in the case
of maximization) bound on the objective value of the original problem (in
problems with no objective function, if the restricted problem has no feasible
solution, neither does the original problem).

Our goal now is to define a rebate function h(w) that satisfies the con-
straints (including the constraint that checks the objective value of ẑ is
achieved) at all value profiles. Treating ẑ as a constant, constraints for all
value profiles are of the form given by Equation 1. We would like a re-
bate function that allows us to represent these constraints as in Equation 2.
This can be done by defining h(w) to be the line segment connecting points
(0, ĥ(0)) and (1, ĥ(1)) (see Figure 1(b)). By Observation 1, such constraints
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are satisfied throughout the value space if they are satisfied at the extreme
value profiles (0, 0), (1, 0) and (1, 1). But by construction of h, the con-
straints are satisfied at these points. In particular, the objective value of the
restricted problem (i.e., an upper bound) is achieved at all value profiles for
the solution h(w). Therefore, the upper bound ẑ is tight, and the solution
h(w) is optimal.9

In the last example, the constraints were of the form in Equation 1
throughout the value space and the optimal rebates were linear through-
out the domain of the rebate function, which we call the rebate space. In
general, the value space needs to be subdivided into regions where the con-
straints take the form of Equation 1. We illustrate this next by modifying
the previous example.

Let the item have a cost of k ∈ (0, 1). Under the efficient allocation
agent 2 is never allocated, and agent 1 is allocated only if his value exceeds
the cost, in which case his threshold is τ(v2) = max(k, v2). The constraints
of the linear program take the form of Equation 1 (again, treating z as a
constant) on the regions where the allocation is fixed and the threshold is
linear. There are three such regions shown in Figure 2(a). In more detail,
agent 1 is not allocated in the left bottom region, agent 1 is allocated and
pays τ(v2) = k in the rectangular region, and agent 1 is allocated and pays
τ(v2) = v2 in the top region. The extreme points of this partition are (0, 0),
(k, 0), (1, 0), (k, k), (1, k), and (1, 1) and the corresponding rebates are ĥ(0),
ĥ(k), and ĥ(1). Proceeding as we did in the previous example we would have
to linearly connect these rebate values, which is impossible when these three
values do not fall on a line. In general, as the domain of the rebate function
is in Rn−1, we can linearly interpolate n rebate values. Thus, we would like
to subdivide the rebate space into regions with n (in our example n = 2)
extreme points (i.e., into simplexes). In this example, such subdivision is
natural: into the intervals (0, k) and (k, 1). We can define a linear rebate
function on each region: one connecting ĥ(0) to ĥ(k) and the other connecting
ĥ(k) to ĥ(1) (see Figure 2(b)). We refer to these functions as ha and hb:

h(w) =

{
ha(w) if 0 ≤ w1 ≤ k

hb(w) if k ≤ w1 ≤ 1

9The approach described above is equivalent to the one proposed by Guo et al. [11] in
the context of a particular allocation model and objective function. Also see footnote 13.
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Now we can apply the argument from the previous example to each of the
three value space regions. In more detail, throughout each value region the
constrains are of the form in Equation 1. Crucially, the agent’s rebate at all
points of a region is given by the same linear function (i.e., either ha or hb).
Thus, the definition of h allows us to represent the constrains in the form
of Equation 2 and apply Observation 1 at each region. In Figure 2(a), the
rebate function used by first and second agent respectively, is shown in each
region. As in the previous example, the no-subsidy constraint holds and the
objective value of ẑ is achieved for all value profiles guaranteeing optimality
of the rebate function h.

(a) Regions where constraints are linear
in v.

(b) Optimal rebate function.

Figure 2: Two allocation regions.

In these examples, we partitioned the rebate space into regions each with
n (in these examples, n = 2) extreme points and defined a linear rebate
function on each region by interpolating the optimal rebate values of the
restricted problem. The value space is partitioned in such a way that the
constraints on each value region are linear (see Equation 2). This can be
achieved only if for all points within a value region the agent’s rebate is
given by the same linear rebate function. A partitioning of the rebate and
value spaces satisfying these properties is the main part of our method, which
is formalized in the next section.
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4. Main Results

Our technique takes a geometric view of the problem. Specifically, we in-
troduce the notion of consistent partitions of value and rebate spaces, and
then present an algorithm for finding an optimal rebate function given such
partitions. Finally, we describe a class of problems that admit consistent
partitions.

We start with a series of definitions from polyhedral geometry that we
need to define value regions where constraints take a linear form (see Equa-
tion 2). Let relative interior relint(p) of a polytope p denote the polytope
without its facets.

Definition 1. A set PX of polytopes is a subdivision (equivalently, a par-
tition) of the polytope X if the polytopes PX do not overlap: relint(p) ∩
relint(q) = ∅, ∀ p, q ∈ PX , and cover exactly the polytope X:

⋃
p∈PX

p = X.

Definition 2. A subdivision PX refines a subdivision P ′X if for each p ∈ PX
there is a p′ ∈ P ′X | p ⊆ p′.

We extend this definition to refinements of sets of polytopes that are not
necessarily subdivisions.

Definition 3. A subdivision PX refines a polytope q if for all p ∈ PX the
intersection with q is either empty or p: relint(p)∩ relint(q) = ∅∨ p∩ q = p.

Definition 4. A subdivision PX refines a set of polytopes Q if PX refines
all polytopes q ∈ Q.

As we discussed in the examples in Section 3, an allocation function
induces a subdivision of the value space into regions where the allocation is
fixed and the threshold is linear (i.e., the constraints are as in Equation 1).
We call this an initial subdivision P init

V . Note that for the constraints to be
given by the same coefficients α (see Equation 2), they must belong to the
same initial subdivision region. Thus, we would like the subdivision PV of
the value space to refine this initial subdivision P init

V .
Building on the definitions above, we describe additional properties of

the subdivisions of the value and rebate spaces that guarantee linearity of
the constraints on each value space region if the rebate function is linear on
each rebate space region. We use the following notation. A d-dimensional
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polytope p is a finite intersection of halfspaces: p = {x ∈ Rd | Ax ≥ b},
where A ∈ Rk×d, b ∈ Rk, and k is the number of halfspaces. Thus, a pair
(A, b) defines the corresponding polytope.

Definition 5. Lifting of a subdivision PW from W to V is a set of polytopes
in V

lift(PW ) =
⋃

(A,b)∈PW

n⋃
i=1

(Av−i ≥ b) ∩ V

Each polytope (A, b) ∈ PW adds n (possibly overlapping) polytopes to lift(PW ).
For example, lifting the polytope k ≥ w1 ≥ 0 yields the polytopes {k ≥
v2} ∩ {1 ≥ v1 ≥ v2 ≥ 0} and k ≥ v1 ≥ v2 ≥ 0 (see Figures 2(a) and 2(b)).

The partition PW of the rebate space in Figure 2(b) is given by 2 polytopes
k ≥ w1 ≥ 0 and 1 ≥ w1 ≥ k with a linear rebate function defined on each
region (ha and hb, respectively). For constraints to be linear throughout a
value region q ∈ PV , the rebate h(v−i) of each agent i must be linear for
all v ∈ q. This holds if the choice of the rebate function for agent i is the
same throughout q (e.g., the rebate of agent 1 is given by ha throughout the
rectangular region in Figure 2(a)). Stating this property formally, we obtain
∀q ∈ PV , ∀i ∈ {1, . . . , n} there exists p ∈ PW | v−i ∈ p, ∀v ∈ q. In words, for
a given agent i, and value region q, the vectors v−i must belong to the same
rebate region p for all v ∈ q. The next lemma shows that this requirement is
equivalent to a geometric property we call region consistency.

Definition 6 (Region consistency). Subdivisions PV and PW are region-
consistent if PV refines the polytopes lift(PW ).

To illustrate region consistency, consider the value space subdivision PV
shown in Figure 2(a) and the rebate space subdivision PW in Figure 2(b).
The polytopes defining the partition PV always fit within a single polytope
from lift(PW ): indeed, lifting the polytope k ≥ w1 ≥ 0 yields the polytopes
{k ≥ v2} ∩ {1 ≥ v1 ≥ v2 ≥ 0} and {k ≥ v1} ∩ {1 ≥ v1 ≥ v2 ≥ 0}, and lifting
the polytope 1 ≥ w1 ≥ k yields the polytopes {1 ≥ v2 ≥ k}∩{1 ≥ v1 ≥ v2 ≥
0} and {1 ≥ v1} ∩ {1 ≥ v1 ≥ v2 ≥ 0}.

Lemma 1. Let PV and PW be partitions of the value and the rebate spaces,
respectively. Then, ∀q ∈ PV , ∀i ∈ {1, . . . , n} there exists p ∈ PW | v−i ∈
p, ∀v ∈ q if and only if PV and PW are region-consistent.
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Proof condition ⇒ region consistency. Pick an agent i and a polytope p =
(Aw ≥ b) ∈ PW . Define q′ = ((Av−i ≥ b) ∩ V ). We show that PV must refine
q′. Suppose the contrary: there is a polytope q ∈ PV that overlaps with q′

and q ∩ q′ 6= q. Pick v′ ∈ q′ ∩ q and v ∈ q \ q′. By construction, v′−i ∈ p
but v−i /∈ p. This contradicts the property that the rebate for agent i at all
points in q must come from the same region. The argument holds for all i
and p ∈ W and the claim follows.

region consistency ⇒ condition. Pick an agent i. Consider the polytopes
p = (Aw ≥ b) ∈ PW and q′ = ((Av−i ≥ b) ∩ V ) ∈ lift(PW ). By refinement,
for any polytope q ∈ PV | relint(q′) ∩ relint(q) 6= ∅ it holds that q′ ∩ q = q.
But then for such polytope q and agent i, it holds that {v−i | v ∈ q} ⊆ p.
The argument holds for all i and q′ ∈ lift(PW ). The polytopes lift(PW )
cover (with overlap) the polytope V : any point v ∈ V belongs to the lifted
polytopes {p ∈ PW | v−i ∈ p}ni=1. Thus, the argument holds for all q ∈ PV .
�

As in the examples above, we consider the restricted problem where the
value space is limited to the extreme points of PV , denoted by P̂V . The
rebates of the restricted problem, can be described as a “projection” of the
extreme value profiles. For instance, for n = 2, “projecting” the point (1, 0)
yields 0 for the projection of the first agent, and 1 for the projection of
the second agent. The projection of the extreme point of the value space
partition in Figure 2(a) yields 0, k, and 1: i.e., the rebates that appear in
Figure 2(b).

Definition 7. Given a subdivision PV , the projection of its extreme points
P̂V on W is

ΠW (P̂V ) =
⋃
v∈P̂V

n⋃
i=1

v−i

When region consistency is satisfied and the rebate function is linear on each
rebate region, the constraints are linear on each value region and Observa-
tion 1 applies. Thus, our goal is to define a linear rebate function on each
rebate region. As in the examples, we want the rebate function to yield the
optimal rebates for the restricted problem. A natural case is when the re-
bates from the restricted problem are the extreme points of the rebate space
subdivision. In this case, a rebate function can be defined by linearly inter-
polating the extreme points (this may be not possible if a region has more
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than n extreme points as we discuss below). We call this property vertex
consistency.

Definition 8 (Vertex consistency). Subdivisions PV and PW are vertex-
consistent if the projection of the extreme points of PV is the extreme points
of PW

ΠW (P̂V ) = P̂W

For instance, the subdivisions shown in Figures 2(a) and 2(b)) are vertex-
consistent. Indeed, the set of extreme points of the value space partition
is P̂V = {(0, 0), (k, 0), (1, 0), (k, k), (1, k), (1, 1)}, which projection onto the
rebate space gives {(0), (k), (1)} = P̂W .

We are going to linearly interpolate the rebate values at the extreme
points of each rebate region. One can linearly combine d+1 of d-dimensional
points, and a linear rebate function (with n−1 dimensional domain) is guar-
anteed to exist if each region has n extreme points. We refer to subdivisions
satisfying this property along with the ones described above as consistent
and state our main result.

Definition 9. For a given initial partition P init
V , partitions PV and PW are

consistent if: (i) PV refines P init
V ; (ii) PV and PW are region- and vertex-

consistent; and (iii) each polytope in PW has n extreme points.

In the above definition, property (i) implies that the allocation is constant
on each region of PV , property (ii) guarantees that within each region of PV ,
the rebate of each agent is given by a unique rebate function, and finally,
property (iii) allows to define linear rebate functions throughout each region
of PW . Based on this, the next theorem provides a constructive characteriza-
tion of optimal rebate functions for mechanism design problems that admit
consistent partitions.

Theorem 2. Let PV and PW denote consistent subdivisions for a mechanism
design problem with an allocation function inducing the initial partition P init

V .

Let {ĥ(w) | w ∈ P̂W} denote the set of rebates from an optimal solution
to the restricted problem, which only considers profiles P̂V . Further, let p̂
denote the set of n extreme points of a polytope p ∈ PW . For each polytope,
define a linear rebate function hp(w) =

∑n−1
i=1 a

p
iwi + bp with coefficients ap ∈

Rn−1, bp ∈ R given by a solution to the system of linear equations {ĥ(w) =∑n−1
i=1 a

p
iwi + bp | w ∈ p̂}. Then, the following rebate function is optimal for

the mechanism design problem: for w ∈ p, h(w) = hp(w).
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Proof Property (i) of Definition 9 ensures that the constraints on a value
region q ∈ PV are of the form given in Equation 1. Further, property (ii)
guarantees that if h is linear on PW , then the constraints can be represented
by linear coefficients as shown in Equation 2. By construction (using prop-
erty (iii) to ensure existence), h(w) is linear on PW and the constraints hold
at the extreme points of each q ∈ PV . Thus, Observation 1 applies, ensuring
h(v−i) satisfies the constraints at all points v ∈ q for each q. As the objec-
tive function is represented by a constraint, and the objective value of the
restricted problem (i.e., upper bound) is achieved for all v ∈ V , the rebate
function h(w) is optimal. �

Theorem 2 shows how to construct an optimal rebate function for any
mechanism design problem that admits consistent partitions. Given such
partitions PV and PW , one just needs to solve the restricted problem and then
define a linear rebate function for each rebate region by linearly interpolating
optimal rebates at its n extreme points.

Importantly, Theorem 2 provides a constructive proof of the existence of
a piecewise linear optimal solution for any mechanism design problem that
admits consistent partitions. Now, the question is which problems admit
such partitions. More specifically, it is about allocation functions, since the
initial partition is determined by the allocation function.

While full characterization remains an avenue for future work, we describe
a class of subdivisions of the value space, for which we can find consistent
partitions in Theorem 3. Our approach applies to any mechanism design
problem with allocation functions10 that are constant on each region of this
subdivision: i.e., we can find a rebate function that is optimal according to
the objective function and satisfies the constraints of the given mechanism
design problem.

In more detail, the class of subdivisions is parameterized by a set of con-
stants C = {c1, . . . , cm}. Partitions of V and W obtained by hyperplanes
vi = cj ∀i, j are region- and vertex-consistent (in W space the hyperplanes
are wi = cj). These hyperplanes define a grid. Each cell in the grid is a hy-
perrectangle. Partitioning each hyperrectangle with

(
n
2

)
(for W space,

(
n−1
2

)
)

hyperplanes corresponding to the equation of the diagonal from the lower left
to the upper right corner of the rectangle obtained by projecting the hyper-

10The allocation function still needs to be monotone as required by Theorem 1.
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rectangle on each pair of the coordinates, results in consistent subdivisions.
This subdivision is defined in Figure 3.

Theorem 3. The partitions PV = partition(V,C) and PW = partition(W,C)
are consistent for any allocation function f that is constant on each region
q ∈ PV .

Proof We need to show that for any set of constants C, the subdivisions
PV = partition(V,C) and PW = partition(W,C) satisfy three properties of
Definition 9.

Let C denote the set of m constants between 0 and 1. Consider the grid
in Rn obtained after step 1 of partition(V,C) (see Figure 3):

vi = cj ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}

The grid partitions the value space {v ∈ Rn | 1 ≥ v1 ≥ . . . ≥ vn ≥ 0}
into hyperrectangles11. We call this partition P grid

V and the corresponding
partition of the rebate space P grid

W .
Step 2 of the partition algorithm, further subdivides each of the hyper-

rectangles. In fact, each hyperrectangle is subdivided into simplices; i.e.,
triangulated. The triangulation performed in step 2 is a trivial extension of
a canonical hypercube triangulation (see, e.g., [8] p.312). A hyperrectan-
gle in Rn can be triangulated into n! simplices. Each simplex is given by a
permutation σ = (σ(1), . . . , σ(n)) of the numbers 1 . . . n:

0 ≤
vσ(1)
aσ(1)

≤
vσ(2)
aσ(2)

≤ · · · ≤
vσ(n)
aσ(n)

≤ 1

where ai ∈ R denotes the length of the hyperrectangle in dimension i. Thus,
a simplex in the triangulation corresponds to an ordering of (weighted) co-
ordinates. This triangulation is obtained by cutting the hyperrectangle with(
n
2

)
hyperplanes of the form vi

ai
=

vj
aj

. Each hyperplane corresponds to the

diagonal from the lower left to the upper right corner (henceforth, the main
diagonal) of the rectangle obtained by projecting V on (i, j). Without loss of
generality assume, the “lower left” vertex of the hypercube is the origin. The
extreme points of a simplex σ are the n + 1 vertices of the hyperrectangle:
vk for k ∈ {0, 1, . . . , n}, where vkσ(i) = 0 for i ≤ k and vkσ(i) = aσ(i) for i > k.

11On a boundary vi = vj only part of the hyperrectangle is in the polytope.
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Property (iii) of Definition 9 follows immediately. Vertex consistency also
follows trivially as the extreme points of PV and PW are all non-decreasing
vectors where each elements takes a value from C ∪ {0} ∪ {1}. To argue
region consistency, we need additional notation.

Definition 10. For a hyperrectangle p = (A, b) ∈ PW , a tunnel across di-
mension i in PV is Ti(p) = (Av−i ≥ b) ∩ (0 ≤ vi ≤ 1).

In words, a tunnel is a polytope in Rn obtained by lifting region p ∈ PW for
agent i. For ease of exposition, we define a tunnel for 0 ≤ vi ≤ 1 instead of
vi | v ∈ V (i.e., 0 ≤ v1 ≤ . . . , vi−1 ≤ vi ≤ vi+1 ≤ . . . ≤ vn ≤ 1).

A tunnel consists of m + 1 disjoint hyperrectangles q ∈ [0, 1]n given by
the corners v ∈ Rn as defined below

Ti(p) =
⋃

c∈C∪{0}

v | (vi = c, v−i = corner(p))

A hyperrectangle q ∈ PV is given by the intersection of n tunnels Ti(q−i) for 1 ≤
i ≤ n implying that the grid subdivisions P grid

V and P grid
W are region-consistent:

q refines each of these tunnels, and no other tunnels intersect with q.
It remains to argue that triangulations within each hyperrectangle of PV

and PW are region-consistent. Consider each tunnel along with the subdivi-
sion defined inside of it: a tunnel Ti(p) contains

(
n−1
2

)
diagonal hyperplanes

triangulating p. As noted before, the only tunnels that cross q ∈ PV are
Ti(q−i) for 1 ≤ i ≤ n. We show that they bring exactly

(
n
2

)
diagonal hyper-

planes that triangulate q. Specifically, it can be shown that the intersection
of any 3 of these tunnels introduces all triangulating hyperplanes. Diagonal
hyperplanes from the other tunnels coincide with the existing ones. In more
detail, a tunnel Ti(q−i) introduces all of its

(
n−1
2

)
diagonal hyperplanes to

q. Consider another tunnel Tj(q−j) with j 6= i. The diagonals from faces of
q−(i,j) were already introduced by Ti(q−i). The diagonal hyperplanes from
Tj(q−j) that are not in Ti(q−i), are from the remaining (n− 2) comparisons
of qi to q−(i,j). After introducing the hyperplanes from tunnels Ti and Tj,
the only pair of coordinates that has not been compared yet is i, j. This is
the only other diagonal that the remaining (n − 2) tunnels contribute. All
the other diagonals coincide with the ones introduced by Ti or Tj. The total
number of diagonal hyperplanes is

(
n−1
2

)
from Ti plus (n− 2) from Tj plus 1

from the others. The total is exactly the number of pairwise comparisons of
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n numbers:
(
n
2

)
. Since all of the hyperplanes from lift(PW ) coincide with the

hyperplanes defining PV , consistency of PV and PW follows.
The only property of Definition 9 that we have not shown is (i). By a

condition of the theorem, f is constant on q ∈ PV . We only need to argue
that the threshold is linear on q ∈ PV . For a region q ∈ PV , the threshold for
each allocated agent (we do not need to worry about thresholds of unallocated
agents as they do not show up in the constraints), is the minimum value he
can report to remain in q when other agents report q−i. By construction,
this value is given by one of the hyperplanes obtained from lift(p) for agent i
where p | q−i ∈ p. Equation of the hyperplane represents the linear threshold.

�

Note that for the allocation function that is constant throughout the entire
value space, the trivial subdivisions PV = V and PW = W are consistent
and Theorem 3 applies.12,13 Two exemplar mechanism design problems with
such allocations are the focus of Sections 5.1.1 and 5.1.2.

Any allocation rule that makes decisions based on comparing an agent’s
value to a constant also admits a consistent partition. Here the set of con-
stants C would include all constants used by the allocation function. We
apply the approach to an example mechanism design problem with such al-
location function in Section 5.2.

Remark 1. Any allocation function can be approximated with a “constant-
dependent” function. Indeed, the hyperplanes vi = c | c ∈ C create a grid
over the value space V , and any function can be approximated by its piecewise
constant components; moreover, this can be done arbitrarily well by taking
finer grids.14 Thereby, our technique applies to (an approximation of) any
possible mechanism design problem in single-parameter allocation domains.15

12The value space V is a simplex given by n + 1 extreme points (0, 0, 0 . . . , 0),
(1, 0, 0 . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 1, 0, . . . , 1). Similarly the rebate space W is a simplex
given by n extreme points.

13For the case of trivial subdivisions, Guo and Conitzer [11] developed the technique
of interpolating rebates for the restricted problem, which we generalize in Theorem 2 to
arbitrary consistent subdivisions.

14We acknowledge that computational feasibility is a concern: the size of the linear
program grows exponentially as the grid becomes finer.

15We thank Warren Schudy for making this observation.
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Algorithm partition
Inputs: polytope X ⊂ Rd, set of constants C = {c1, . . . , cm}
1. partition X along xi = cj ∀j ∈ {1, . . . ,m}, i ∈ {1, . . . , d}

/* denote the partition by P gridX */

2. for each hyperrectangle p ∈ P gridX

for each pair (i, j) of dimensions i, j ∈ {1, . . . , d}, i 6= j,
partition p along xi = axj + b
where a, b ∈ R define the diagonal from the lower left
to the upper right corner of the projection onto the i-j plane

Figure 3: Consistent partitions.

5. Applications

We demonstrate the applicability of our approach on two fundamental alloca-
tion models (with free or non-free items) under different objectives. We begin
with a previously studied allocation model where free homogeneous items are
efficiently allocated to agents with unit demand [17, 12, 20]. In Section 5.1.1,
the objective of welfare-maximization is pursued. The objective of fairness
is tackled in Section 5.1.2. A more general allocation model where items can
be produced for an increasing marginal cost is presented in Section 5.2. The
rebate functions provided by our approach for settings with costs are novel.
Note that optimal rebates can be obtained for welfare-maximizing as well as
fairness-optimizing mechanisms and all of the solutions are derived following
the same approach.

5.1. Free Homogeneous Items

5.1.1. Welfare-maximizing Allocation

In this section, we consider welfare-maximizing allocation of free items in
single-parameter domains. The problem has been solved analytically in [17,
12]. Nonetheless, we choose to start with this setting as it provides a natural
introduction to the following sections.

There are m identical items and n agents with unit demand. The items
are (weakly) desirable, so we talk of distribution of “goods”, and there is a
rationing problem: each agent claims a unit but all claims cannot be met
(m < n). Efficiency requires assigning the items to the m agents who value
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them the most. Agents’ valuations for consuming the item, 1 ≥ v1 ≥ . . . ≥
vn ≥ 0, are private information. To ensure truthful reporting (see Theo-
rem 1), payment to each agent i must be given by two functions h and τ as
described in Theorem 1. For the efficient allocation function, the price for
allocated agents is τ(v−i) = vm+1 ∀i ≤ m.

The natural constraints that the mechanism must satisfy are described
next. The mechanism must be subsidy-free; that is, the sum of payments
is non-positive

∑n
i=1 ti(v) ≤ 0. Utility of each agent after participating in

the mechanism should be non-negative: ui(v) ≥ 0, to provide incentives
for agents to participate in the mechanism. This constraint is known as
individual rationality or voluntary participation.

Under no subsidy, the goal is to minimize the budget surplus (the amount
burnt) of the mechanism or, equivalently, to maximize the welfare it achieves.
Note, however, that the absolute welfare realized by the mechanism is not
an appropriate measure of its performance since it does not show how far
this value is from the first-best solution; i.e., the maximal welfare one could
achieve if the agents’ values were known. In order to have an index that is
unit-free (i.e., homogenous of degree zero), it is natural to use a ratio. Finally,
since the agents’ values are not known and no prior is available, we consider
a worst-case index. Therefore, following [17, 12], we use the following welfare
ratio to evaluate the performance of a dominant-strategy mechanism:

min
v∈V

∑m
i=1 vi −mvm+1 +

∑n
i=1 h(v−i)∑m

i=1 vi

The numerator is the social welfare achieved by the mechanism, while the de-
nominator is the value of the efficient allocation, which is the highest possible
social welfare for subsidy-free mechanisms. Finding a mechanism whose wel-
fare ratio (henceforth, the ratio) is z means that a proportion z of the efficient
allocation value (i.e., maximum social welfare) is achieved, independently of
what the agents’ values are.

Below we formally state the problem of finding the welfare-maximizing
allocation mechanism. In order to remove minimization over all value profiles
from the objective function, we introduce additional variable z and require
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it not to exceed the welfare ratio realized for each profile:

max
z∈R, h:Rn−1→R

z s.t. ∀ v ∈ V (3)

m∑
i=1

vi −mvm+1 +

n∑
i=1

h(v−i) ≥ z
m∑
i=1

vi (4)

h(v−i) ≥ 0 ∀i (5)
n∑
i=1

h(v−i) ≤ mvm+1 (6)

Equation 4 ensures that the ratio is achieved for all value profiles. Equation 5
guarantees that the utility of each agent is non-negative.16 Finally, the no-
subsidy constraint is enforced in (6): the total amount redistributed cannot
exceed the total price paid by the allocated agents.

To apply our approach, note that the allocation is fixed and the threshold
of allocated agents (i.e., vm+1) is linear on the entire value space. Therefore,
the constraints (4)-(6) are of the form described by Equation 1. The empty
partitions PV = V and PW = W are consistent and thus we can find an
optimal rebate function by solving the restricted problem and then linearly
interpolating the rebates throughout the only W space region (see Theo-
rem 2). Restricting the problem to the natural set of extreme points of
the value space V ∩ {0, 1}n, we get the system of 2(n + 1) linear inequali-
ties (constraints (4) and (6) are enforced for each of n + 1 extreme points;
constraint (5) follows from non-negativity of the variables) with exactly n
nonnegative variables hx, x = 0, 1, . . . , n − 1, that correspond to rebates
h(wx) where wx is an (n− 1)-dimensional non-decreasing binary vector with
x ones: wx ∈ W ∩ {0, 1}n−1,

∑n−1
i=1 w

x
i = x.

While in order to obtain an optimal mechanism for a problem with n
agents and m items we need to solve a linear program, Moulin [17] and Guo

16One may notice that the individual rationality constraint for allocated agents is vi −
vm+1 + h(v−i) ≥ 0, which seems weaker than Equation 5. In fact, since this seemingly
weaker constraint must hold for all v ∈ V and i ∈ N , it implies h(v−i) ≥ 0 ∀ i ≤ m and so
can be equivalently replaced by the latter. Indeed, fix any v ∈ V and i ∈ N , and consider
a value profile v′ ∈ V such that v′j = (v−i)j for all j ≤ m − 1, v′m = v′m+1 = (v−i)m and
v′m+k = (v−i)m+k−1 for k = 1, . . . , n −m. From the individual rationality constraint for
allocated agent m at profile v′, i.e. v′m− v′m+1 +h(v′−m) ≥ 0, we get h(v−i) ≥ 0 ∀ i ≤ m.
This has been also noted in [17].
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and Conitzer [12] derived the optimal solution analytically for any n and
m. Clearly, an analytical solution is preferable; however, it required involved
proofs at each step. In contrast, some of the analytical results derived in
those papers, follow immediately when approaching the problem using our
method. For instance, the existence of an optimal linear rebate function is
directly implied by Theorem 2. The uniqueness of this solution, which had
to be proven in [17, 12], also follows immediately after checking that the
restricted problem has a unique optimal solution.17 Furthermore, in some
problems, our approach yields a complete closed-form mechanism without
any computation. We give an example of this in the next section.

5.1.2. Fair Allocation

In this section we apply our approach to fair task imposition. We start by
re-deriving the results for a single task by Porter et al. [20]. We then pro-
ceed to show that an optimal payment function for a setting with multiple
tasks, for which no closed-form solution has been previously derived, can be
easily obtained using our method. Importantly, our approach provides a new
perspective on this problem: instead of using counterexamples to show im-
possibility theorems and proving optimality and uniqueness of a constructed
rebate function, in our case, impossibility, optimality and uniqueness results,
all are obtained by solving a simple system of equations. Specifically, im-
possibility results are obtained when a corresponding system has no feasible
solution, while optimality and uniqueness are implied by the uniqueness of a
solution to the system of equations.

Suppose one wishes to fairly assign tasks to agents each having private
information about the level of effort required from the agent to perform the
task. The net payment to the agents is non-positive (that is, there is no
budget deficit), and the assignment is efficient (agents with lowest levels
of required effort get the tasks). Since the agents are obligated to provide
the service and make payments to the center, the standard constraint of
individual rationality is replaced with k-fairness, which requires the agents’
disutilities to be “as low as possible”—namely, no greater than m

n
of the

kth lowest level of effort. Finally, truthfulness has to be satisfied as both
efficiency and k-fairness depend on the true agents’ types.

17Uniqueness can be checked by generating all solutions to the linear program, which
can be done with solvers such as Cplex.
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For convenience, we consider this problem in the context of “distribution
of goods” rather than “imposition of bads”—this can be done equivalently by
viewing tasks as items with negative values.18 We choose this interpretation
as it is consistent with the previous allocation example.19 Notice that this
model is exactly the same as the one in Section 5.1.1. The only difference is
that in this setting there is no objective function and the k-fairness constraint
strengthens the individual rationality constraint.

Stated mathematically, a k-fair mechanism exists if and only if there
exists a rebate function h : W → R satisfying the constraints (7)-(8) below
for each possible value profile v. These constraints are linear in v and h:

h(v−i) ≥
mvk
n

∀i (7)

n∑
i=1

h(v−i) ≤ mvm+1 (8)

We now show that the fair imposition problem can be easily solved using our
method. We first re-derive the results by Porter et al. [20]—the impossibility
theorem for 1, 2-fairness and a 3-fair mechanism for a single task (m = 1),
and then generalize these results to the case with multiple tasks: we show
impossibility for k ≤ m+1 and find an (m+2)-fair mechanism. Although, as
proposed in [20], this mechanism could be achieved by applying sequentially
the Porter’s protocol for a single task, our approach provides a “one-shot”
solution in a closed form. Moreover, our technique implies the uniqueness of
a linear (m+ 2)-fair mechanism.

As in the previous example, the allocation is fixed on the whole value
space, and the trivial partitions PV = V and PW = W are consistent.
The extreme points of V define a system of inequalities with n variables
hx, x = 0, 1, . . . , n − 1, that correspond to rebates h(wx) where wx is an
(n − 1)-dimensional binary vector with x leading ones. By Theorem 2, we
only need to find a feasible solution to this system of inequalities and then
linearly extend the rebate values obtained from this solution: this way we,
in particular, find an (m + 2)-fair mechanism. The impossibility result for
k ≤ m+1 follows from the fact that the above system has no feasible solution.
These derivations are shown next.

18See discussion in [20].
19In the extended setting considered in the next section, we could equivalently represent

items with costs by tasks with benefits they provide to the society when completed.
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Single task

Let k ≤ 2 and show there is no feasible solution to the system (7)-(8), even
when restricted to the extreme points of V . From (7) for v0 = (0, 0, . . . , 0)

we have h0 ≥
v0k
n

= 0; coupled with (8) for v1 = (1, 0, . . . , 0): h0 +(n−1)h1 ≤
mv12 = 0, this implies that h1 ≤ 0. This contradicts the k-fairness constraint

(7) for i = 2 and v2 = (1, 1, 0, . . . , 0): h1 ≥
v1k
n

= 1
n
> 0.

However, for k = 3 the system does have a feasible solution. First, we
solve the system for vectors in P̂V . From (7) and (8) for vn = (1, 1, . . . , 1) we
get hn = 1

n
. Then, (7) and (8) for vn−1 = (1, 1, . . . , 1, 0) we have hn−1 ≥ 1

n

and hn + (n− 1)hn−1 = 1
n

+ (n− 1)hn−1 ≤ 1, implying hn−1 = 1
n
. Proceeding

this way, for any x ≥ 2 we obtain hx = 1
n
. Finally, from (7) and (8) for

v0 = (0, 0, . . . , 0) and v1 = (1, 0, . . . , 0) we have h0 = h1 = 0. Note that this
solution is unique.

Now, for any w ∈ W its corresponding rebate is defined by the equation
h(w) =

∑n−1
i=1 aiwi + b, where the coefficients are determined by the extreme

points of W :

h0 = a10 + a20 + . . .+ an−10 + b ⇒ b = 0

h1 = a11 + a20 + . . .+ an−10 + b ⇒ a1 = 0

h2 = a11 + a21 + a30 + . . .+ an−10 + b ⇒ a2 = h2 =
1

n
hx = a11 + a21 + . . .+ ax1 + ax+10 + . . .+ an−10 + b

⇒ ax = 0, ∀ 3 ≥ x ≥ n− 1

Thus, for any w ∈ W , h(w) = 1
n
w2, which coincides with the mechanism by

Porter et al. [20].
We have demonstrated that a 3-fair mechanism can be obtained by solving

simple systems of linear equations; moreover, our technique implies that such
a linear mechanism is unique. Next, we show that a closed-form solution can
also be found for settings with multiple tasks.

Multiple tasks

The following proposition generalizes the results to the case with m ≥ 1.

Proposition 1. There is no efficient dominant-strategy mechanism that sat-
isfies no subsidy and k-fairness for k ≤ m + 1. There exists a unique effi-
cient linear (m + 2)-fair such mechanism given by: for i ≤ m, fi(v) = 1,
ti(v) = h(v−i) − vm+1, and for i > m, fi(v) = 0, ti(v) = h(v−i), where
h(w) = m

n
wm+1.
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Proof Let vx ∈ P̂V denote an extreme point of V with x ones followed by
zeros, and assume k ≤ m + 1. From (7) for vm−1 and (8) for vm it follows
that hm ≤ 0. However, from (7) for vm+1, i = m + 1, we have hm ≥ m

n
> 0,

a contradiction.
Now let k = m + 2. Solving the system (7)-(8) for vectors in P̂V , we

obtain the following unique solution: hx = 0 for x = 0, . . . ,m, and hx = m
n

for x = m + 1, . . . , n. Now, solve {h(w) =
∑n−1

i=1 aiwi + b |w ∈ P̂W} and get
am+1 = m

n
, ax = b = 0, where x = 1, . . . ,m,m + 2, . . . , n. Thus, we have

h(w) = m
n
wm+1. �

5.2. Allocation with Costs

In this section, we apply our technique to solve a number of open mechanism
design problems. Specifically, we consider scenarios where items are not free
but have (increasing marginal) costs c1 ≤ c2 ≤ . . . ≤ cn. The goal, as before,
may be either to maximize the social welfare or to achieve k-fairness.

The allocation problem with increasing marginal costs is a simple and
fundamental example of the tragedy of the commons [15], in which multiple
participants, acting independently to optimize their own objectives, will ul-
timately deplete a shared limited resource even when it is clear that it is not
in anyone’s long-term interest for this to happen. Increasing marginal costs
model decreasing returns to every agent as the number of allocated items
increases. For instance, consider membership in a free gym. As the gym be-
comes more crowded, the utility each member derives from exercising there
decreases. Membership in the gym corresponds to an item in our model.
Cost of item i represents the marginal disutility of the members for sharing
the gym with another person.

The question of allocating homogeneous items with costs was previously
considered in [6, 16], although for a different purpose—to compare “random
priority” and “average cost” mechanisms. We observe that Theorem 2 holds
for this model where the set of constants C coincides with the set of marginal
costs: the consistent partitions are given by PV = partition(V,C) and PW =
partition(W,C). Given this, we provide the first algorithm for computing
optimal payment functions for the welfare-maximizing allocation, and an
analytical solution for a k-fair allocation.

In contrast to the case with free items, the number of allocated agents is
not fixed but depends on c and v: the efficient allocation function does not
assign the item to an agent whose value for the item is lower than its cost.
Formally, an efficient mechanism in this setting will maximize the total value
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of the allocated agents minus the total cost; the number of items allocated
this way is m(v, c) = maxi(i | vi ≥ ci) and the value of the efficient allocation

is
∑m(v,c)

i=1 (vi − ci). Let m′(w, c) = maxi(i | wi ≥ ci) denote the number
of items allocated efficiently among n − 1 agents with types w = v−i for
some i. When clear from the context we drop the arguments from m(v, c)
and m′(w, c) and talk about m and m′. The value of the threshold for
the allocated agents under efficient allocation (see Theorem 1) is τ(v−i) =
min((v−i)m′ , cm′+1), which for the allocated agents i ≤ m becomes τ(v−i) =
max(vm+1, cm). Finally, we assume that at least one, but no more than n−1,
items are allocated: i.e., c1 < v1 and cn > 1.

5.2.1. Welfare-Maximizing Allocation
We now formulate the welfare-maximizing allocation problem in this domain.
First, we extend the definition of the welfare ratio as follows:

min
v∈V

∑m(v,c)
i=1 vi −m(v, c) max(vm+1, cm(v,c)) +

∑n
i=1 h(v−i)∑m(v,c)

i=1 (vi − ci)

Note that we fix the cost vector c and consider the worst ratio over all
possible value profiles: we do not take the minimum over costs as that would
obviously result in a zero ratio—when the first n− 1 costs are the same, the
ratio is zero as in the case with n − 1 free items. The welfare-maximizing
allocation problem is then defined by the following optimization program:

max
z∈R, h:W→R

z s.t. ∀ v ∈ V (9)

m = argmaxi(vi ≥ ci) (10)
m∑
i=1

vi −mmax(vm+1, cm) +
n∑
i=1

h(v−i) ≥ z
m∑
i=1

(vi − ci) (11)

h(v−i) ≥ 0 ∀i (12)
n∑
i=1

h(v−i) ≤ mmax(vm+1, cm)−
m∑
i=1

ci (13)

Equation 10 computes the number of allocated items for the current value
profile. As before, (11) ensures that the ratio is achieved for all value profiles.
Constraint (12) guarantees that the utility of each agent is non-negative (see
footnote 16). Finally, the no-subsidy constraint is enforced in (13): the
amount redistributed cannot exceed the total price paid less the cost of the
allocated items.
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The efficient allocation in this model satisfies Theorem 2 (with PV =
partition(V,C) and PW = partition(W,C)). Therefore, a piecewise linear
welfare-maximizing mechanism can be obtained by solving (9)-(13) for the
value profiles P̂V , and linearly interpolating the rebates at these—extreme—
points across each region in PW .

5.2.2. Fair Allocation
The notion of k-fairness was designed to guarantee that every agent gets
a (maximal) share of the social welfare. Social welfare in the model with
free items is a function of the values of the allocated agents, and k-fairness
measures the share of each agent relative to the value of kth agent. In
the model with costs, however, social welfare is reduced by the cost of the
allocated items. Accordingly, a fair share now must be a function of this cost.
To this end, we naturally generalize the k-fairness metric by subtracting the
cost

∑m
i=1 ci. Thus, for the allocation to be k-fair, the following inequalities

must hold for each value profile v ∈ V :

m = argmaxi(vi ≥ ci) (14)

h(v−i) ≥
1

n

(
mvk −

m∑
i=1

ci

)
∀i (15)

n∑
i=1

h(v−i) ≤ mmax(vm+1, cm)−
m∑
i=1

ci (16)

The generalized notion of k-fairness coincides with the regular k-fairness when m
items have zero cost and no other items are available. Thus, the impossibility
results for k < m+ 2 still apply (when allocating items with costs, the number of
allocated items is not fixed but depends on the value v and cost c profiles).

Solving the restricted problem (i.e., Equations 14-16 for the extreme points of
the partition PV = partition(V,C)) for a few different cost profiles, we derive a
(m+ 2)-fair mechanism stated in the theorem below.

Theorem 4. The rebate function

h(w) =
1

n

(
m′max(wm′+1, cm′)−

m′∑
i=1

ci

)
(17)

together with the efficient allocation define a (m+ 2)-fair mechanism.
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Proof We need to show that Equations 15-16 hold for k = m+ 2 and the rebate
function from Equation 17:

1

n

(
m′max((v−i)m′+1, cm′)−

m′∑
i=1

ci

)
≥ 1

n

(
mvm+2 −

m∑
i=1

ci

)
∀i (18)

n∑
i=1

1

n

(
m′max((v−i)m′+1, cm′)−

m′∑
i=1

ci

)
≤ mmax(vm+1, cm)−

m∑
i=1

ci (19)

We prove separately for the two following cases: the number of items m′ allocated
when agent i is missing can be either m or m− 1. Formally,

m′(v−i) =

{
m(v−i) if (v−i)m ≥ cm
m(v−i)− 1 if (v−i)m ≤ cm

When (v−i)m ≥ cm, the rebate h(v−i) becomes

1

n

(
mmax((v−i)m+1, cm)−

m∑
i=1

ci

)
≥

1

n

(
mmax(vm+2, cm)−

m∑
i=1

ci

)
≥

1

n

(
mvm+2 −

m∑
i=1

ci

)

The first inequality follows as (v−i)m+1 is vm+2 for i ≤ m + 1 and vm+1 ≥ vm+2

for i > m + 1. Thus, Equation 15 is satisfied. Next we show that the no-subsidy
Equation 16 holds as well.

n∑
i=1

1

n

(
mmax((v−i)m+1, cm)−

m∑
i=1

ci

)
≤

n∑
i=1

1

n

(
mmax(vm+1, cm)−

m∑
i=1

ci

)
=

mmax(vm+1, cm)−
m∑
i=1

ci

The first inequality holds as (v−i)m+1 is vm+2 ≤ vm+1 for i ≤ m+ 1 and vm+1 for
i > m + 1. Now, we turn to the second case (v−i)m ≤ cm with m′ = m − 1. The
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rebate in this case is

1

n

(
(m− 1) max((v−i)m, cm−1)−

m−1∑
i=1

ci

)
≥

1

n

(
(m− 1) max((v−i)m, cm−1)−

m−1∑
i=1

ci + ((v−i)m − cm)

)
≥

1

n

(
(m− 1) max(vm+1, cm−1)−

m−1∑
i=1

ci + (vm+1 − cm)

)
≥

1

n

(
mvm+2 −

m∑
i=1

ci

)

We used (v−i)m ≤ cm to obtain the first inequality, and (v−i)m ≥ vm+1 to get the
second. Finally, we deal with Equation 16:

n∑
i=1

1

n

(
(m− 1) max((v−i)m, cm−1)−

m−1∑
i=1

ci

)
≤

n∑
i=1

1

n

(
(m− 1)cm −

m−1∑
i=1

ci

)
=

n∑
i=1

1

n

(
mcm −

m∑
i=1

ci

)
≤

mmax(vm+1, cm)−
m∑
i=1

ci

The first inequality follows from (v−i)m ≤ cm and cm ≥ cm−1. �

Interestingly, the optimal rebate function is linear on the subdivision of W space,
which is the same as the initial subdivision of the value space for n − 1 agents.
This subdivision has only 2n regions: there are n possible allocations (no agents
is allocated, agent 1 is allocated, . . . , all n-1 agents are allocated). Within an
allocation region with m′ allocated agents, there are two regions on which threshold
is linear: on one the threshold is given by wm′+1, on the other by cm′ .

6. Discussion and Future Work

In this paper we link optimality of payments to geometric properties of n and
(n − 1)-dimensional polytopes that we call consistent subdivisions. Using this

28



characterization, we establish that piecewise linear payment functions are optimal,
and reduce the problem of finding them to solving a linear program. Mechanism
design problems that have no objective function but seek payments satisfying a
combination of constraints (see Sections 5.1.2 and 5.2.2 for examples) are therefore
reduced to solving a system of linear inequalities. These reductions lead to imme-
diate solutions of mechanism design problems that are otherwise hard to tackle.
Given this, our work can be viewed as an instance of Automated Mechanism De-
sign [5, 13] that sets forth the objective of taking a mechanism design problem as
an input, and outputting an optimal mechanism.

Even though our technique is algorithmic, we are sometimes able to derive
“complete” analytical solutions. In more detail, optimal payments in mechanism
design problems depend on the number of agents, and in allocation scenarios—on
the number of items available (and if applicable, their costs). Given a configuration
of these parameters (e.g., 2 free items and 5 agents) as input to our algorithm, we
find optimal (e.g., maximizing social welfare under efficient allocation) payment
functions. To avoid computing optimal payment functions for each configuration,
it is desirable to obtain analytical solutions parameterized by configuration pa-
rameters. Such complete analytical solutions can be obtained using our approach
by finding optimal payments functions for a few configurations and discerning how
the optimal functions change with the configuration parameters. For example, the
rebate functions in Sections 5.1.2 and 5.2.2 were derived this way.

Complete analytical solutions are desirable also because linear programs be-
come computationally intractable as the values of configuration parameters in-
crease. We note however, that our focus is not on computational efficiency, but
rather is on the optimality of solutions. Indeed, consistent subdivisions may have
an exponential number of regions in the number of agents n and the number of
cost constants. In the case of welfare-maximizing payment functions for alloca-
tion with costs, we empirically observed for small values of n that almost all of
the regions defined by consistent subdivisions are required to find an optimal pay-
ment function. However, in the case of k-fair mechanisms, most of these regions
have the same optimal rebate function, and thus can be merged. In fact, an opti-
mal payment function can be specified on a subdivision into just 2n regions (see
Equation 17).

In the rest of this section, we comment on the applicability of our approach and
directions for future work. Perhaps the most significant limitation is the reliance
of the approach on finding consistent partitions. To this end, Theorem 3 provides
a partial characterization of allocation functions that admit consistent partitions.
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However, at this stage, a complete characterization remains an open question.20 To
remedy this limitation, in a working paper [9], we are building on the techniques
developed here to find heuristic solutions when consistent partitions cannot be
identified. In that paper, we also extend the concept of consistent partitions to
multi-parameter domains.

Our technique is designed for deterministic mechanisms: i.e., a deterministic
allocation function must be provided as an input. Considering randomized mech-
anisms and, more generally, optimizing over (potentially randomized) allocation
function and payment function simultaneously is an open direction for future re-
search. To date, the potential for advances in this direction has been demonstrated
by showing that non-efficient allocation functions lead to much better mechanisms
in certain cases [11, 7, 14]. However, these results only provide heuristic solutions.

Finally, we discuss the restriction to anonymous rebate functions. Apt et al.
show in [1] how to convert n agent-specific rebate functions into a single rebate
function used by all agents (i.e., into an anonymous rebate function). This anony-
mous function satisfies the same constraints as the agent-specific functions (the
authors provide a proof for the no subsidy constraint, but the same logic applies
to the ratio constraint; individual rationality/k-fairness is trivial). Thus, the re-
striction to anonymous rebate functions is innocuous in all of the applications
considered in this paper.
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